Quiz Chapter 10: Eigenvalues and Eigenvectors MULTIPLE CHOICE TEST (All Tests) EIGENVALUES AND EIGENVECTORS (More on Eigenvalues and Eigenvectors) Pick the most appropriate answer 1. The eigenvalues of \begin{bmatrix} 5&6&17 \\ 0&-19&23 \\ 0&0&37 \\ \end{bmatrix} are -19, \, 5, \, 37 19, \, -5, \, -37 2, \, -3, \, 7 3, \, -5, \, 37 2. If \begin{bmatrix} -4.5\\-4\\1\\ \end{bmatrix} is an eigenvector of \begin{bmatrix} 8&-4&2 \\ 4&0&2 \\ 0&-2&-4 \\ \end{bmatrix}, the eigenvalue corresponding to the eigenvector is 1 4 -4.5 6 3. The eigenvalues of the following matrix \begin{bmatrix} 3&2&9 \\ 7&5&13 \\ 6&17&19 \\ \end{bmatrix} are given by solving the cubic equation \lambda^{3} - 27\lambda^{2} + 167\lambda - 285 \lambda^{3} - 27\lambda^{2} - 122\lambda - 313 \lambda^{3} + 27\lambda^{2} + 167\lambda + 285 \lambda^{3} + 23.23\lambda^{2} - 158.3\lambda + 313 4. The eigenvalues of a 4 \times 4 matrix \left[ A \right] are given as 2, \, -3, \, 13, and 7. The |det(A)| then is 546 19 25 cannot be determined 5. If one of the eigenvalues of \left[ A \right]_{n \times n} is zero, it implies The solution to \left[ A \right] \left[ X \right] = \left[ C \right] system of equations is unique The determinant of \left[ A \right] is zero The solution to \left[ A \right] \left[ X \right] = \left[ 0 \right] system of equations is trivial The determinant of \left[ A \right] is non-zero 6. Given that matrix \left[ A \right] = \begin{bmatrix} 8&-4&2 \\ 4&0&2 \\ 0&-2&-3 \\ \end{bmatrix} has an eigenvalue value of 4 with the corresponding eigenvectors of \left[ x \right] = \begin{bmatrix} -4.5 \\ -4 \\ 1 \\ \end{bmatrix}, then \left[ A \right]^{5} \left[ X \right] is \begin{bmatrix} -18 \\ -16 \\ 4 \\ \end{bmatrix} \begin{bmatrix} -4.5 \\ -4 \\ 1 \\ \end{bmatrix} \begin{bmatrix} -4608 \\ -4096 \\ 1024 \\ \end{bmatrix} \begin{bmatrix} -0.004395 \\ -0.003906 \\ 0.0009766 \\ \end{bmatrix} Loading …