# Quiz Chapter 03: Binary Operations

 MULTIPLE CHOICE TEST BINARY OPERATIONS

1. If $\left[ A \right] = \begin{bmatrix} 5&6\\7&-3\\ \end{bmatrix}$ and $\left[ B \right] = \begin{bmatrix} 2 \\ 3 \\ \end{bmatrix}$ then $\left[ A \right] \left[ B \right]=$

2. For the product $\left[ A \right] \left[ B \right]$ to be possible

3. If $\left[ A \right] = \begin{bmatrix} 50&60 \\ 20&-30 \\ \end{bmatrix}$ then $6 \left[ A \right]$ is equal to

4. $\left[ A \right]$ and $\left[ B \right]$ are square matrices of $n \times n$ order. Then $\left( \left[ A \right] - \left[ B \right] \right) \left( \left[ A \right] - \left[ B \right] \right)$ is equal to

5. Given $\left[ A \right]$ is a rectangular matrix and $c \left[ A \right] = \left[ 0 \right]$, then choose the most appropriate answer.

6. You sell Jupiter and Fickers Candy bars. The sales in January are $25$ and $30$ of Jupiter and Fickers, respectively. In February, the sales are $75$ and $35$ of Jupiter and Fickers, respectively. If a Jupiter bar costs $\2$ and a Fickers bar costs $\7$, then if

• $\left[ A \right] = \begin{bmatrix} 25&30 \\ 75&35 \\ \end{bmatrix}$, and $\left[ B \right] = \begin{bmatrix} 2 \\ 7 \\ \end{bmatrix}$,

the total sales amount in each month is given by