Quiz Chapter 03: Binary Operations


(All Tests)


(More on Binary Operations)

Pick the most appropriate answer

1. If \left[ A \right] = \begin{bmatrix} 5&6\\7&-3\\ \end{bmatrix} and \left[ B \right] = \begin{bmatrix} 2 \\ 3 \\ \end{bmatrix} then \left[ A \right] \left[ B \right]=


2. For the product \left[ A \right] \left[ B \right] to be possible


3. If \left[ A \right] = \begin{bmatrix} 50&60 \\ 20&-30 \\ \end{bmatrix} then 6 \left[ A \right] is equal to


4. \left[ A \right] and \left[ B \right] are square matrices of n \times n order. Then \left( \left[ A \right] - \left[ B \right] \right) \left( \left[ A \right] - \left[ B \right] \right) is equal to


5. Given \left[ A \right] is a rectangular matrix and c \left[ A \right] = \left[ 0 \right], then choose the most appropriate answer.


6. You sell Jupiter and Fickers Candy bars. The sales in January are 25 and 30 of Jupiter and Fickers, respectively. In February, the sales are 75 and 35 of Jupiter and Fickers, respectively. If a Jupiter bar costs \$2 and a Fickers bar costs \$7, then if

      • \left[ A \right] = \begin{bmatrix} 25&30 \\ 75&35 \\ \end{bmatrix}, and \left[ B \right] = \begin{bmatrix} 2 \\ 7 \\ \end{bmatrix},

the total sales amount in each month is given by