## Gauss-Siedel Method

## Autar Kaw Benjamin Rigsby

Transforming Numerical Methods Education for STEM Undergraduates

## Gauss-Siedel Method

## Objectives

1. solve a set of equations using the Gauss-Seidel method,
2. recognize the advantages and pitfalls of the GaussSeidel method, and
3. determine under what conditions the Gauss-Seidel method always converges.

## Gauss-Seidel Method

## An iterative method.

Basic Procedure:

- Algebraically solve each linear equation for $x_{i}$
- Assume an initial guess solution array
- Solve for each $x_{i}$ and repeat
- Use absolute relative approximate error after each iteration to check if error is within a pre-specified tolerance.


## Gauss-Seidel Method

## Why?

The Gauss-Seidel Method allows the user to control round-off error.

Elimination methods such as Gaussian Elimination and LU Decomposition are prone to prone to round-off error.

Also: If the physics of the problem are understood, a close initial guess can be made, decreasing the number of iterations needed.

## Gauss-Seidel Method

## Algorithm

A set of $n$ equations and $n$ unknowns:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 n} x_{n}=b_{2}
\end{aligned}
$$

If: the diagonal elements are non-zero

Rewrite each equation solving for the corresponding unknown
$a_{n 1} x_{1}+a_{n 2} x_{2}+a_{n 3} x_{3}+\ldots+a_{n n} x_{n}=b_{n}$ ex:

First equation, solve for $x_{1}$
Second equation, solve for $x_{2}$

## Gauss-Seidel Method

## Algorithm

Rewriting each equation

$$
x_{1}=\frac{c_{1}-a_{12} x_{2}-a_{13} x_{3} \ldots \ldots-a_{1 n} x_{n}}{a_{11}} \longleftarrow \text { From Equation } 1
$$

$$
x_{2}=\frac{c_{2}-a_{21} x_{1}-a_{23} x_{3} \ldots \ldots-a_{2 n} x_{n}}{a_{22}}
$$

From equation 2
$x_{n-1}=\frac{c_{n-1}-a_{n-1,1} x_{1}-a_{n-1,2} x_{2} \ldots \ldots-a_{n-1, n-2} x_{n-2}-a_{n-1, n} x_{n}}{a_{n-1, n-1}} \longleftarrow$ From equation $n-1$
$x_{n}=\frac{c_{n}-a_{n 1} x_{1}-a_{n 2} x_{2}-\ldots \ldots-a_{n, n-1} x_{n-1}}{a_{n n}}$
From equation $n$

## Gauss-Seidel Method

## Algorithm

General Form of each equation

$$
\begin{aligned}
x_{1}=\frac{c_{1}-\sum_{\substack{j=1 \\
j \neq 1}}^{n} a_{1 j} x_{j}}{a_{11}} & x_{n-1}=\frac{c_{n-1}-\sum_{\substack{j=1 \\
j \neq n-1}}^{n} a_{n-1, j} x_{j}}{a_{n-1, n-1}} \\
x_{2}-\sum_{\substack{j=1 \\
j \neq 2}}^{x_{2}} a_{2 j} x_{j} & X_{n}=\frac{c_{n}-\sum_{j=1}^{n} a_{n j} x_{j}}{a_{22}} \quad a_{n n}
\end{aligned}
$$

## Gauss-Seidel Method

## Algorithm

General Form for any row ' $i$ '

$$
x_{i}=\frac{c_{i}-\sum_{\substack{j=1 \\ j \neq i}}^{n} a_{i j} x_{j}}{a_{i i}}, i=1,2, \ldots, n .
$$

How or where can this equation be used?

## Gauss-Seidel Method

## Solve for the unknowns

Assume an initial guess for [ $X$ ]

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right]
$$

Use rewritten equations to solve for each value of $x_{i}$.

Important: Remember to use the most recent value of $x_{i}$. Which means to apply values calculated to the calculations remaining in the current iteration.

## Gauss-Seidel Method

Calculate the Absolute Relative Approximate Error

$$
\left|\in_{a}\right|_{i}=\left|\frac{x_{i}^{\text {new }}-x_{i}^{\text {old }}}{x_{i}^{\text {new }}}\right| \times 100
$$

So when has the answer been found?

The iterations are stopped when the absolute relative approximate error is less than a prespecified tolerance for all unknowns.

## Gauss-Seidel Method: Example 1

The upward velocity of a rocket is given at three different times

Table 1 Velocity vs. Time data.

| Time, $t(\mathrm{~s})$ | Velocity $v(\mathrm{~m} / \mathrm{s})$ |
| :---: | :---: |
| 5 | 106.8 |
| 8 | 177.2 |
| 12 | 279.2 |



The velocity data is approximated by a polynomial as:

$$
v(t)=a_{1} t^{2}+a_{2} t+a_{3}, 5 \leq \mathrm{t} \leq 12
$$

## Gauss-Seidel Method: Example 1 (cont.)

Using a Matrix template of the form $\quad\left[\begin{array}{ccc}t_{1}^{2} & t_{1} & 1 \\ t_{2}^{2} & t_{2} & 1 \\ t_{3}^{2} & t_{3} & 1\end{array}\right]\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$

The system of equations becomes

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]} \\
& {\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right]}
\end{aligned}
$$

## Gauss-Seidel Method: Example 1 (cont.)

Rewriting each equation

$$
a_{1}=\frac{106.8-5 a_{2}-a_{3}}{25}
$$

$\left[\begin{array}{ccc}25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1\end{array}\right]\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]=\left[\begin{array}{l}106.8 \\ 177.2 \\ 279.2\end{array}\right]$

$$
a_{2}=\frac{177.2-64 a_{1}-a_{3}}{8}
$$

$$
a_{3}=\frac{279.2-144 a_{1}-12 a_{2}}{1}
$$

## Gauss-Seidel Method: Example 1 (cont.)

Applying the initial guess and solving for $a_{i}$

$$
\begin{aligned}
& {\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right]}
\end{aligned} \begin{aligned}
& \mathrm{a}_{1}=\frac{106.8-5(2)-(5)}{25}=3.6720 \\
& \text { Initial Guess }
\end{aligned} \quad \begin{aligned}
& \mathrm{a}_{2}=\frac{177.2-64(3.6720)-(5)}{8}=-7.8510 \\
&
\end{aligned}
$$

When solving for $a_{2}$, how many of the initial guess values were used?

## Gauss-Seidel Method: Example 1 (cont.)

Finding the absolute relative approximate error

$$
\begin{array}{lr}
\left|\in_{a}\right|_{i}=\left|\frac{x_{i}^{\text {new }}-x_{i}^{\text {old }}}{x_{i}^{\text {new }}}\right| \times 100 & \text { At the end of the first iteration } \\
\left|\epsilon_{a}\right|_{1}=\left|\frac{3.6720-1.0000}{3.6720}\right| \times 100=72.76 \% & {\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
3.6720 \\
-7.8510 \\
-155.36
\end{array}\right]}
\end{array}
$$

$$
\left|\epsilon_{\mathrm{a}}\right|_{2}=\left|\frac{-7.8510-2.0000}{-7.8510}\right| \times 100=125.47 \%
$$

The maximum absolute relative approximate error is $125.47 \%$

$$
\left|\epsilon_{\mathrm{a}}\right|_{3}=\left|\frac{-155.36-5.0000}{-155.36}\right| \times 100=103.22 \%
$$

## Gauss-Seidel Method: Example 1 (cont.)

Iteration \#2
Using
$\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]=\left[\begin{array}{c}3.6720 \\ -7.8510 \\ -155.36\end{array}\right]$
the values of $a_{i}$ are found:
$a_{1}=\frac{106.8-5(-7.8510)-155.36}{25}=12.056$
from iteration \#1

$$
\begin{aligned}
& a_{2}=\frac{177.2-64(12.056)-155.36}{8}=-54.882 \\
& a_{3}=\frac{279.2-144(12.056)-12(-54.882)}{1}=-798.34
\end{aligned}
$$

## Gauss-Seidel Method: Example 1 (cont.)

Finding the absolute relative approximate error

$$
\begin{aligned}
& \left|\epsilon_{\mathrm{a}}\right|_{1}=\left|\frac{12.056-3.6720}{12.056}\right| \times 100=69.543 \% \\
& \left|\epsilon_{a}\right|_{2}=\left|\frac{-54.882-(-7.8510)}{-54.882}\right| \times 100=85.695 \% \\
& \left|\epsilon_{\mathrm{a}}\right|_{3}=\left|\frac{-798.34-(-155.36)}{-798.34}\right| \times 100=80.540 \%
\end{aligned}
$$

At the end of the second iteration

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
12.056 \\
-54.882 \\
-798.54
\end{array}\right]
$$

The maximum absolute relative approximate error is $85.695 \%$

## Gauss-Seidel Method: Example 1 (cont.)

Repeating more iterations, the following values are obtained

| Iteration | $a_{1}$ | $\left\|\epsilon_{a}\right\|_{1} \%$ | $a_{2}$ | $\left\|\epsilon_{a}\right\|_{2} \%$ | $a_{3}$ | $\left\|\epsilon_{a}\right\|_{3} \%$ |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| 1 | 3.6720 | 72.767 | -7.8510 | 125.47 | -155.36 | 103.22 |
| 2 | 12.056 | 69.543 | -54.882 | 85.695 | -798.34 | 80.540 |
| 3 | 47.182 | 74.447 | -255.51 | 78.521 | -3448.9 | 76.852 |
| 4 | 193.33 | 75.595 | -1093.4 | 76.632 | -14440 | 76.116 |
| 5 | 800.53 | 75.850 | -4577.2 | 76.112 | -60072 | 75.963 |
| 6 | 3322.6 | 75.906 | -19049 | 75.972 | -249580 | 75.931 |

Notice - The relative errors are not decreasing at any significant rate

Also, the solution is not converging to the true solution of

## Gauss-Seidel Method: Pitfall

## What went wrong?

Even though done correctly, the answer is not converging to the correct answer

This example illustrates a pitfall of the Gauss-Siedel method: not all systems of equations will converge.

## Is there a fix?

One class of system of equations always converges: One with a diagonally dominant coefficient matrix.

Diagonally dominant: $[A]$ in $[A][X]=[C]$ is diagonally dominant if:

$$
\left|a_{\mathrm{ii}}\right| \geq \sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right| \quad \text { for all ‘i' } \quad \text { and }\left|a_{i i}\right|>\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right| \text { for at least one ' } i \text { ' }
$$

## Gauss-Seidel Method: Pitfall

Diagonally dominant: The coefficient on the diagonal must be at least equal to the sum of the other coefficients in that row and at least one row with a diagonal coefficient greater than the sum of the other coefficients in that row.

Which coefficient matrix is diagonally dominant?

$$
[\mathrm{A}]=\left[\begin{array}{ccc}
2 & 5.81 & 34 \\
45 & 43 & 1 \\
123 & 16 & 1
\end{array}\right] \quad[\mathrm{B}]=\left[\begin{array}{ccc}
124 & 34 & 56 \\
23 & 53 & 5 \\
96 & 34 & 129
\end{array}\right]
$$

Most physical systems do result in simultaneous linear equations that have diagonally dominant coefficient matrices.

## Gauss-Seidel Method: Example 2

Given the system of equations

$$
\begin{aligned}
12 x_{1}+3 x_{2}-5 x_{3} & =1 \\
x_{1}+5 x_{2}+3 x_{3} & =28 \\
3 x_{1}+7 x_{2}+13 x_{3} & =76
\end{aligned}
$$

With an initial guess of

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

The coefficient matrix is:

$$
[A]=\left[\begin{array}{ccc}
12 & 3 & -5 \\
1 & 5 & 3 \\
3 & 7 & 13
\end{array}\right]
$$

Will the solution converge using the Gauss-Siedel method?

## Gauss-Seidel Method: Example 2 (cont.)

Checking if the coefficient matrix is diagonally dominant

$$
[A]=\left[\begin{array}{ccc}
12 & 3 & -5 \\
1 & 5 & 3 \\
3 & 7 & 13
\end{array}\right] \quad \begin{aligned}
& \left|a_{11}\right|=|12|=12 \geq\left|a_{12}\right|+\left|a_{13}\right|=|3|+|-5|=8 \\
& \left|a_{22}\right|=|5|=5 \geq\left|a_{21}\right|+\left|a_{23}\right|=|1|+|3|=4 \\
& \left|a_{33}\right|=|13|=13 \geq\left|a_{31}\right|+\left|a_{32}\right|=|3|+|7|=10
\end{aligned}
$$

The inequalities are all true and at least one row is strictly greater than:
Therefore: The solution should converge using the Gauss-Siedel Method

## Gauss-Seidel Method: Example 2 (cont.)

Rewriting each equation

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
12 & 3 & -5 \\
1 & 5 & 3 \\
3 & 7 & 13
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
28 \\
76
\end{array}\right]} \\
& x_{1}=\frac{1-3 x_{2}+5 x_{3}}{12} \\
& x_{2}=\frac{28-x_{1}-3 x_{3}}{5} \\
& x_{3}=\frac{76-3 x_{1}-7 x_{2}}{13}
\end{aligned}
$$

With an initial guess of

$$
\begin{gathered}
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]} \\
x_{1}=\frac{1-3(0)+5(1)}{12}=0.50000 \\
x_{2}=\frac{28-(0.5)-3(1)}{5}=4.9000 \\
x_{3}=\frac{76-3(0.50000)-7(4.9000)}{13}=3.0923
\end{gathered}
$$

## Gauss-Seidel Method: Example 2 (cont.)

The absolute relative approximate error

$$
\begin{aligned}
& \left|\epsilon_{a}\right|_{1}=\left|\frac{0.50000-1.0000}{0.50000}\right| \times 100=100.00 \% \\
& \left|\epsilon_{\mathrm{a}}\right|_{2}=\left|\frac{4.9000-0}{4.9000}\right| \times 100=100.00 \% \\
& \left|\epsilon_{\mathrm{a}}\right|_{3}=\left|\frac{3.0923-1.0000}{3.0923}\right| \times 100=67.662 \%
\end{aligned}
$$

The maximum absolute relative error after the first iteration is $100 \%$

## Gauss-Seidel Method: Example 2 (cont.)

After Iteration \#1

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0.5000 \\
4.9000 \\
3.0923
\end{array}\right]
$$

Substituting the $x$ values into the equations

After Iteration \#2

$$
x_{1}=\frac{1-3(4.9000)+5(3.0923)}{12}=0.14679
$$

$$
x_{2}=\frac{28-(0.14679)-3(3.0923)}{5}=3.7153
$$

$$
x_{3}=\frac{76-3(0.14679)-7(4.900)}{13}=3.8118
$$

## Gauss-Seidel Method: Example 2 (cont.)

Iteration \#2 absolute relative approximate error

$$
\begin{aligned}
& \left|\epsilon_{\mathrm{a}}\right|_{1}=\left|\frac{0.14679-0.50000}{0.14679}\right| \times 100=240.61 \% \\
& \left|\epsilon_{\mathrm{a}}\right|_{2}=\left|\frac{3.7153-4.9000}{3.7153}\right| \times 100=31.889 \% \\
& \left|\epsilon_{\mathrm{a}}\right|_{3}=\left|\frac{3.8118-3.0923}{3.8118}\right| \times 100=18.874 \%
\end{aligned}
$$

The maximum absolute relative error after the first iteration is $240.61 \%$
This is much larger than the maximum absolute relative error obtained in iteration \#1. Is this a problem?

## Gauss-Seidel Method: Example 2 (cont.)

Repeating more iterations, the following values are obtained

| Iteration | $a_{1}$ | $\left\|\epsilon_{a}\right\|_{1} \%$ | $a_{2}$ | $\left\|\epsilon_{a}\right\|_{2} \%$ | $a_{3}$ | $\left\|\epsilon_{a}\right\|_{3} \%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.50000 | 100.00 | 4.9000 | 100.00 | 3.0923 | 67.662 |
| 2 | 0.14679 | 240.61 | 3.7153 | 31.889 | 3.8118 | 18.876 |
| 3 | 0.74275 | 80.236 | 3.1644 | 17.408 | 3.9708 | 4.0042 |
| 4 | 0.94675 | 21.546 | 3.0281 | 4.4996 | 3.9971 | 0.65772 |
| 5 | 0.99177 | 4.5391 | 3.0034 | 0.82499 | 4.0001 | 0.074383 |
| 6 | 0.99919 | 0.74307 | 3.0001 | 0.10856 | 4.0001 | 0.00101 |

The solution obtained $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}0.99919 \\ 3.0001 \\ 4.0001\end{array}\right]$ is close to the exact solution of $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right]$

## Gauss-Seidel Method: Example 3

Given the system of equations

$$
\begin{aligned}
3 x_{1}+7 x_{2}+13 x_{3} & =76 \\
x_{1}+5 x_{2}+3 x_{3} & =28 \\
12 x_{1}+3 x_{2}-5 x_{3} & =1
\end{aligned}
$$

Rewriting the equations

$$
x_{1}=\frac{76-7 x_{2}-13 x_{3}}{3}
$$

With an initial guess of

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

$$
x_{2}=\frac{28-x_{1}-3 x_{3}}{5}
$$

$$
x_{3}=\frac{1-12 x_{1}-3 x_{2}}{-5}
$$

## Gauss-Seidel Method: Example 3 (cont.)

Conducting six iterations, the following values are obtained

| Iteration | $a_{1}$ | $\mid \epsilon_{\left.a\right\|_{1}} \%$ | $A_{2}$ | $\left\|\epsilon_{a}\right\|_{2} \%$ | $a_{3}$ | $\left\|\epsilon_{a}\right\|_{3} \%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 21.000 | 95.238 | 0.80000 | 100.00 | 50.680 | 98.027 |
| 2 | -196.15 | 110.71 | 14.421 | 94.453 | -462.30 | 110.96 |
| 3 | -1995.0 | 109.83 | -116.02 | 112.43 | 4718.1 | 109.80 |
| 4 | -20149 | 109.90 | 1204.6 | 109.63 | -47636 | 109.90 |
| 5 | $2.0364 \times 10^{5}$ | 109.89 | -12140 | 109.92 | $4.8144 \times 10^{5}$ | 109.89 |
| 6 | $-2.0579 \times 10^{5}$ | 109.89 | $1.2272 \times 10^{5}$ | 109.89 | $-4.8653 \times 10^{6}$ | 109.89 |

The values are not converging.
Does this mean that the Gauss-Seidel method cannot be used?

## Gauss-Seidel Method

The Gauss-Seidel Method can still be used

The coefficient matrix is not diagonally dominant

But this is the same set of equations used in example \#2, which did converge.

$$
\begin{aligned}
& {[A]=\left[\begin{array}{ccc}
3 & 7 & 13 \\
1 & 5 & 3 \\
12 & 3 & -5
\end{array}\right]} \\
& {[A]=\left[\begin{array}{ccc}
12 & 3 & -5 \\
1 & 5 & 3 \\
3 & 7 & 13
\end{array}\right]}
\end{aligned}
$$

If a system of linear equations is not diagonally dominant, check to see if rearranging the equations can form a diagonally dominant matrix.

## Gauss-Seidel Method

Not every system of equations can be rearranged to have a diagonally dominant coefficient matrix.

Observe the set of equations

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}=3 \\
2 x_{1}+3 x_{2}+4 x_{3}=9 \\
x_{1}+7 x_{2}+x_{3}=9
\end{array}
$$

Which equation(s) prevents this set of equation from having a diagonally dominant coefficient matrix?

## Gauss-Seidel Method

## Summary

- Advantages of the Gauss-Seidel Method
- Algorithm for the Gauss-Seidel Method
- Pitfalls of the Gauss-Seidel Method


## Gauss-Seidel Method

## Questions?

## Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit
$\underline{\text { http://numericalmethods.eng.usf.edu/topics/gauss_seidel.html }}$

## THE END

http://numericalmethods.eng.usf.edu

