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1. LU Decomposition is another method to solve 

a set of simultaneous linear equations

2. Which is better, Gauss Elimination or LU 

Decomposition?



Method
For most non-singular matrix [A] that one could conduct 
Naïve Gauss Elimination forward elimination steps, one 
can always write it as

[A] = [L][U]
where

[L] = lower triangular matrix

[U] = upper triangular matrix



If solving a set of linear equations
If  [A] = [L][U]  then

Multiply by
Which gives

Remember  [L]-1[L] = [I] which leads to
Now, if [I][U] = [U] then

Now, let
Which ends with

and

[A][X] = [C]
[L][U][X] = [C]
[L]-1

[L]-1[L][U][X] = [L]-1[C]
[I][U][X] = [L]-1[C]
[U][X] = [L]-1[C]
[L]-1[C]=[Z]
[L][Z] = [C]   (1)
[U][X] = [Z]   (2)



How can this be used?

Given  [A][X] = [C]       

1. Decompose [A] into [L] and [U]

2. Solve [L][Z] = [C] for [Z]  

3. Solve [U][X] = [Z] for [X]



Solve [A][X] = [B]

T = clock cycle time and n  n = size of the matrix
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To solve [A][X] = [B]
Time taken by methods

T = clock cycle time and n  n = size of the matrix

So both methods are equally efficient.

Gaussian Elimination LU Decomposition
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Time taken by Gaussian Elimination Time taken by LU Decomposition
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Time taken by Gaussian Elimination Time taken by LU Decomposition
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n 10 100 1000 10000
CT|inverse GE / CT|inverse LU 3.288 25.84 250.8 2501

Table 1 Comparing computational times of finding inverse of a matrix using LU 
decomposition and Gaussian elimination.
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For large n, CT|inverse GE / CT|inverse LU ≈ n/4
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[U] is the same as the coefficient matrix at the end of the forward elimination step.

[L] is obtained using the multipliers that were used in the forward elimination process



Using the Forward Elimination Procedure of Gauss Elimination
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Step 2:
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Using the multipliers used during the Forward Elimination Procedure
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From the first step of 
forward elimination  
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From the second step 
of forward 
elimination
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Solve the following set of 
linear equations using LU 
Decomposition 
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Using the procedure for finding the [L] and [U] matrices
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Set  [L][Z] = [C]

Solve for [Z]
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Complete the forward substitution to solve for [Z]

( )

( ) ( )
735.0

21.965.38.10676.52.279
5.376.52.279

2.96
8.10656.22.177

56.22.177
8.106

213

12

1

=
−−−=

−−=
−=

−=
−=

=

zzz

zz
z

[ ]















−=
















=

735.0
21.96
8.106

3

2

1

z
z
z

Z



Set [U][X] = [Z]

Solve for [X] The 3 equations become
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From the 3rd equation
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Substituting in a3 and using the second 
equation
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Substituting in a3 and a2 using the 
first equation

8106525 321 .aaa =++

Hence the Solution Vector is:
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The inverse [B] of a square matrix [A] is defined as

[A][B] = [I] = [B][A]



How can LU Decomposition be used to find the inverse?
Assume the first column of [B] to be [b11 b12 … bn1]T

Using this and the definition of matrix multiplication

First column of [B]      Second column of [B]
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The remaining columns in [B] can be found in the same manner



Find the inverse of a square matrix [A]
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Using the decomposition procedure, the [L] and [U] matrices are found to be



Solving for the each column of [B] requires two steps

1) Solve [L] [Z] = [C] for [Z] 

2) Solve [U] [X] = [Z] for [X] 

Step 1: [ ][ ] [ ]
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Solving for [Z]
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Solving [U][X] = [Z] for [X]
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Using Backward Substitution
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Repeating for the second and third columns of the inverse

Second Column Third Column
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The inverse of [A] is
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To check your work do the following operation

[A][A]-1 = [I] = [A]-1[A]



For all resources on this topic such as digital audiovisual 
lectures, primers, textbook chapters, multiple-choice tests, 
worksheets in MATLAB, MATHEMATICA, MathCad and 
MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/lu_decompositio
n.html

http://numericalmethods.eng.usf.edu/topics/lu_decomposition.html


THE END
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