LU Decomposition Method

Autar Kaw Benjamin Rigsby

<u>p://nm.MathForCollege.com</u>

Transforming Numerical Methods Education for STEM Undergraduates

LU Decomposition Method

http://nm.MathForCollege.com

1. LU Decomposition is another method to solve

a set of simultaneous linear equations

2. Which is better, Gauss Elimination or LU

Decomposition?

LU Decomposition

Method

For most non-singular matrix [*A*] that one could conduct Naïve Gauss Elimination forward elimination steps, one can always write it as

$$[A] = [L][U]$$

where

[L] = lower triangular matrix[U] = upper triangular matrix

How does LU Decomposition work?

If solving a set of linear equations [A][X] = [C]If [A] = [L][U] then [L][U][X] = [C]Multiply by $[L]^{-1}$ Which gives $[L]^{-1}[L][U][X] = [L]^{-1}[C]$ Remember $[L]^{-1}[L] = [I]$ which leads to $[I][U][X] = [L]^{-1}[C]$ Now, if [I][U] = [U] then $[U][X] = [L]^{-1}[C]$ Now, let $[L]^{-1}[C] = [Z]$ Which ends with [L][Z] = [C] (1) [U][X] = [Z] (2) and

LU Decomposition

How can this be used?

- Given [A][X] = [C]
- 1. Decompose [A] into [L] and [U]
- 2. Solve [*L*][*Z*] = [*C*] for [*Z*]
- 3. Solve [*U*][*X*] = [*Z*] for [*X*]

Is LU Decomposition better than Gaussian Elimination?

Solve [A][X] = [B]

T = clock cycle time and $n \times n =$ size of the matrix

Forward Elimination

$$CT \mid_{FE} = T \left(\frac{8n^3}{3} + 8n^2 - \frac{32n}{3} \right)$$

Back Substitution $CT \mid_{BS} = T(4n^2 + 12n)$ **Decomposition to LU**

$$CT \mid_{DE} = T \left(\frac{8n^3}{3} + 4n^2 - \frac{20n}{3} \right)$$

Forward Substitution $CT \mid_{FS} = T(4n^2 - 4n)$

Back Substitution $CT \mid_{BS} = T(4n^2 + 12n)$

Is LU Decomposition better than Gaussian Elimination?

To solve [A][X] = [B]

Time taken by methods

Gaussian Elimination	LU Decomposition
$T\left(\frac{8n^3}{3}+12n^2+\frac{4n}{3}\right)$	$T\left(\frac{8n^3}{3} + 12n^2 + \frac{4n}{3}\right)$

 $T = \text{clock cycle time and } n \times n = \text{size of the matrix}$

So both methods are equally efficient.

To find inverse of [A]

Time taken by Gaussian Elimination

$$= n\left(CT \mid_{FE} + CT \mid_{BS}\right)$$
$$= T\left(\frac{8n^4}{3} + 12n^3 + \frac{4n^2}{3}\right)$$

<u>Time taken by LU Decomposition</u> = $CT \mid_{LU} + n \times CT \mid_{FS} + n \times CT \mid_{BS}$ = $T\left(\frac{32n^3}{3} + 12n^2 + \frac{20n}{3}\right)$

To find inverse of [A]

Time taken by Gaussian EliminationTime taken by LU Decomposition
$$T\left(\frac{8n^4}{3} + 12n^3 + \frac{4n^2}{3}\right)$$
 $T\left(\frac{32n^3}{3} + 12n^2 - \frac{20n}{3}\right)$

Table 1 Comparing computational times of finding inverse of a matrix using LU decomposition and Gaussian elimination.

n	10	100	1000	10000
$ CT _{inverse GE} / CT _{inverse LU}$	3.288	25.84	250.8	2501

For large *n*,
$$CT|_{inverse GE} / CT|_{inverse LU} \approx n/4$$

http://numericalmethods.eng.usf.edu

Method: [A] Decomposes to [L] and [U]

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} L \end{bmatrix} \begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

[U] is the same as the coefficient matrix at the end of the forward elimination step.[L] is obtained using the *multipliers* that were used in the forward elimination process

Finding the [U] matrix

Using the Forward Elimination Procedure of Gauss Elimination

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix}$$

Step 1: $\frac{64}{25} = 2.56$; $Row2 - Row1(2.56) = \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 144 & 12 & 1 \end{bmatrix}$
 $\frac{144}{25} = 5.76$; $Row3 - Row1(5.76) = \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & -16.8 & -4.76 \end{bmatrix}$

Finding the [U] matrix

Matrix after Step 1:
$$\begin{bmatrix}
 25 & 5 & 1 \\
 0 & -4.8 & -1.56 \\
 0 & -16.8 & -4.76
 \end{bmatrix}$$

Step 2:
$$\frac{-16.8}{-4.8} = 3.5$$
; $Row3 - Row2(3.5) = \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix}$

$$\begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix}$$

Finding the [L] matrix

$$\begin{bmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix}$$

Using the multipliers used during the Forward Elimination Procedure

From the first step of forward elimination

of
$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \qquad \ell_{21} = \frac{a_{21}}{a_{11}} = \frac{64}{25} = 2.56$$

$$\ell_{31} = \frac{a_{31}}{a_{11}} = \frac{144}{25} = 5.76$$

Finding the [L] matrix

From the second step
of forward
elimination
$$\begin{bmatrix} 25 & 5 & 1\\ 0 & -4.8 & -1.56\\ 0 & -16.8 & -4.76 \end{bmatrix} \quad \ell_{32} = \frac{a_{32}}{a_{22}} = \frac{-16.8}{-4.8} = 3.5$$

$$\begin{bmatrix} L \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2.56 & 1 & 0 \\ 5.76 & 3.5 & 1 \end{bmatrix}$$

Does [L][U] = [A]?

$$\begin{bmatrix} L \end{bmatrix} \begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2.56 & 1 & 0 \\ 5.76 & 3.5 & 1 \end{bmatrix} \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} = ?$$

Using LU Decomposition to solve SLEs

Solve the following set of linear equations using LU Decomposition

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

Using the procedure for finding the [L] and [U] matrices

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} L \end{bmatrix} \begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2.56 & 1 & 0 \\ 5.76 & 3.5 & 1 \end{bmatrix} \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix}$$

Example

Set
$$[L][Z] = [C]$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 2.56 & 1 & 0 \\ 5.76 & 3.5 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

Solve for [Z]

$$z_1 = 10$$

2.56z₁ + z₂ = 177.2
5.76z₁ + 3.5z₂ + z₃ = 279.2

Complete the forward substitution to solve for [Z]

$$z_{1} = 106.8$$

$$z_{2} = 177.2 - 2.56z_{1}$$

$$= 177.2 - 2.56(106.8)$$

$$= -96.2$$

$$z_{3} = 279.2 - 5.76z_{1} - 3.5z_{2}$$

$$= 279.2 - 5.76(106.8) - 3.5(-96.21)$$

$$= 0.735$$

$$Z_{1} = \begin{bmatrix} z_{1} \\ z_{2} \\ z_{3} \end{bmatrix} = \begin{bmatrix} 106.8 \\ -96.21 \\ 0.735 \end{bmatrix}$$

Set [U][X] = [Z]

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ -96.21 \\ 0.735 \end{bmatrix}$$

Solve for [*X*]

The 3 equations become $25a_1 + 5a_2 + a_3 = 106.8$ $-4.8a_2 - 1.56a_3 = -96.21$ $0.7a_3 = 0.735$

From the 3rd equation

$$0.7a_3 = 0.735$$
$$a_3 = \frac{0.735}{0.7}$$
$$a_3 = 1.050$$

Substituting in a_3 and using the second equation

$$-4.8a_2 - 1.56a_3 = -96.21$$

$$a_{2} = \frac{-96.21 + 1.56a_{3}}{-4.8}$$
$$a_{2} = \frac{-96.21 + 1.56(1.050)}{-4.8}$$
$$a_{2} = 19.70$$

Substituting in a_3 and a_2 using the first equation

$$25a_1 + 5a_2 + a_3 = 106.8$$

$$a_{1} = \frac{106.8 - 5a_{2} - a_{3}}{25}$$
$$= \frac{106.8 - 5(19.70) - 1.050}{25}$$
$$= 0.2900$$

Hence the Solution Vector is:

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0.2900 \\ 19.70 \\ 1.050 \end{bmatrix}$$

Finding the inverse of a square matrix

The inverse [B] of a square matrix [A] is defined as

[A][B] = [I] = [B][A]

Finding the inverse of a square matrix

How can LU Decomposition be used to find the inverse? Assume the first column of [*B*] to be $[b_{11} \ b_{12} \ \dots \ b_{nl}]^T$ Using this and the definition of matrix multiplication

The remaining columns in [B] can be found in the same manner

Example: Inverse of a Matrix

Find the inverse of a square matrix [A]

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix}$$

Using the decomposition procedure, the [L] and [U] matrices are found to be

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} L \end{bmatrix} \begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2.56 & 1 & 0 \\ 5.76 & 3.5 & 1 \end{bmatrix} \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix}$$

Solving for the each column of [B] requires two steps

- 1) Solve [L] [Z] = [C] for [Z]
- 2) Solve [U] [X] = [Z] for [X]

Step 1:
$$[L][Z] = [C] \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 2.56 & 1 & 0 \\ 5.76 & 3.5 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

This generates the equations:

$$z_1 = 1$$

2.56 $z_1 + z_2 = 0$
5.76 $z_1 + 3.5z_2 + z_3 = 0$

Solving for [*Z*]

$$z_{1} = 1$$

$$z_{2} = 0 - 2.56z_{1}$$

$$= 0 - 2.56(1)$$

$$= -2.56$$

$$\begin{bmatrix} Z \\ z_{1} \\ z_{2} \\ z_{3} \end{bmatrix} = \begin{bmatrix} 1 \\ -2.56 \\ 3.2 \end{bmatrix}$$

$$z_3 = 0 - 5.76z_1 - 3.5z_2$$

= 0 - 5.76(1) - 3.5(-2.56)
= 3.2

Solving
$$[U][X] = [Z]$$
 for $[X]$
$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \end{bmatrix} = \begin{bmatrix} 1 \\ -2.56 \\ 3.2 \end{bmatrix}$$

$$25b_{11} + 5b_{21} + b_{31} = 1$$
$$-4.8b_{21} - 1.56b_{31} = -2.56$$
$$0.7b_{31} = 3.2$$

Using Backward Substitution

$$b_{31} = \frac{3.2}{0.7} = 4.571$$

$$b_{21} = \frac{-2.56 + 1.560b_{31}}{-4.8}$$

$$= \frac{-2.56 + 1.560(4.571)}{-4.8} = -0.9524$$

$$b_{11} = \frac{1 - 5b_{21} - b_{31}}{25}$$

$$= \frac{1 - 5(-0.9524) - 4.571}{25} = 0.04762$$

So the first column of the inverse of [*A*] is:

$$\begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \end{bmatrix} = \begin{bmatrix} 0.04762 \\ -0.9524 \\ 4.571 \end{bmatrix}$$

Repeating for the second and third columns of the inverse

Second Column

25	5	1	$[b_{12}]$		0	
64	8	1	b_{22}	=	1	
144	12	1	b_{32}		0	

$$\begin{bmatrix} b_{12} \\ b_{22} \\ b_{32} \end{bmatrix} = \begin{bmatrix} -0.08333 \\ 1.417 \\ -5.000 \end{bmatrix}$$

Third Column

25	5	1	[]	b_{13}		0
64	8	1	l	b_{23}	=	0
144	12	1	l	b{33}		_1_
	b_{13}		[().035	71]
	<i>b</i> ₂₃	=		0.46	43	
	b_{33}			1.429	9_	

The inverse of [A] is

	0.04762	-0.08333	0.03571
$[A]^{-1} =$	-0.9524	1.417	-0.4643
	4.571	-5.000	1.429

To check your work do the following operation

 $[A][A]^{-1} = [I] = [A]^{-1}[A]$

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/lu_decompositio n.html

THE END

http://numericalmethods.eng.usf.edu