Multiple-Choice Test

Chapter 4.01 Introduction

1. For an $n \times n$ upper triangular matrix $[A]$,
(A) $a_{i j}=0, i>j$
(B) $a_{i j}=0, j>i$
(C) $a_{i j} \neq 0, i>j$
(D) $a_{i j} \neq 0, j>i$
2. Which one of these square matrices is strictly diagonally dominant?
(A) $\left[\begin{array}{ccc}5 & 7 & 0 \\ 3 & -6 & 2 \\ 2 & 2 & 9\end{array}\right]$
(B) $\left[\begin{array}{ccc}7 & -5 & -2 \\ 6 & -13 & -7 \\ 6 & -7 & -13\end{array}\right]$
(C) $\left[\begin{array}{ccc}8 & -5 & -2 \\ 6 & -14 & -7 \\ 6 & -7 & -13\end{array}\right]$
(D) $\left[\begin{array}{ccc}8 & 5 & 2 \\ 6 & 14 & 7 \\ 6 & 7.5 & 14\end{array}\right]$
3. The order of the following matrix is

$$
\left[\begin{array}{cccc}
4 & -6 & -7 & 2 \\
3 & 2 & -5 & 6
\end{array}\right]
$$

(A) 4×2
(B) 2×4
(C) 8×1
(D) not defined
4. To make the following two matrices equal
$[A]=\left[\begin{array}{ccc}5 & -6 & 7 \\ 3 & 2 & 5\end{array}\right]$
$[B]=\left[\begin{array}{lll}5 & p & 7 \\ 3 & 2 & 5\end{array}\right]$
the value of p is
(A) -6
(B) 6
(C) 0
(D) 7
5. For a square $n \times n$ matrix $[A]$ to be an identity matrix,
(A) $\quad a_{i j} \neq 0, i=j ; a_{i j}=0, i=j$
(B) $\quad a_{i j}=0, i \neq j ; a_{i j}=1, i=j$
(C) $a_{i j}=0, i \neq j ; a_{i j}=i, i=j$
(D) $\quad a_{i j}=0, i \neq j ; a_{i j}>0, i=j$
6. To make the following square matrix to be diagonally dominant, the value of p needs to be

$$
\left[\begin{array}{ccc}
6 & -2 & -4 \\
7 & 9 & 1 \\
8 & -5 & p
\end{array}\right]
$$

(A) greater than or equal to 13
(B) greater than 3
(C) greater than or equal to 3
(D) greater than 13

