Holistic Numerical Methods Institute

committed to bringing numerical methods to undergraduates

Multiple-Choice Test Chapter 4.10
 Eigenvalues and Eigenvectors COMPLETE SOLUTION SET

1. The eigenvalues of

$$
\left[\begin{array}{ccc}
5 & 6 & 17 \\
0 & -19 & 23 \\
0 & 0 & 37
\end{array}\right]
$$

are
(A) $-19,5,37$
(B) $19,-5,-37$
(C) $2,-3,7$
(D) $3,-5,37$

Solution

The correct answer is (A).

The eigenvalues of an upper triangular matrix are simply the diagonal entries of the matrix. Hence 5,-19, and 37 are the eigenvalues of the matrix. Alternately, look at $\operatorname{det}([A]-\lambda[I])=0$

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{ccc}
5 & 6 & 17 \\
0 & -19 & 23 \\
0 & 0 & 37
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0 \\
& \operatorname{det}\left(\left[\begin{array}{ccc}
5-\lambda & 6 & 17 \\
0 & -19-\lambda & 23 \\
0 & 0 & 37-\lambda
\end{array}\right]\right)=0 \\
& (5-\lambda)(-19-\lambda)(37-\lambda)=0
\end{aligned}
$$

Then

$$
\lambda=5,-19,37
$$

are the roots of the equation; and hence, the eigenvalues of $[A]$.
2. If $\left[\begin{array}{c}-4.5 \\ -4 \\ 1\end{array}\right]$ is an eigenvector of $\left[\begin{array}{ccc}8 & -4 & 2 \\ 4 & 0 & 2 \\ 0 & -2 & -4\end{array}\right]$, the eigenvalue corresponding to the eigenvector is
(A) 1
(B) 4
(C) -4.5
(D) 6

Solution

The correct answer is (B).
If $[A]$ is a $n \times n$ matrix and λ is one of the eigenvalues and $[X]$ is a $n \times 1$ corresponding eigenvector, then

$$
\begin{aligned}
& {[A][X]=\lambda[X] } \\
& {\left[\begin{array}{ccc}
8 & -4 & 2 \\
4 & 0 & 2 \\
0 & -2 & -4
\end{array}\right]\left[\begin{array}{c}
-4.5 \\
-4 \\
1
\end{array}\right] }=\lambda\left[\begin{array}{c}
-4.5 \\
-4 \\
1
\end{array}\right] \\
& {\left[\begin{array}{c}
-18 \\
-16 \\
4
\end{array}\right] }=\lambda\left[\begin{array}{c}
-4.5 \\
-4 \\
1
\end{array}\right] \\
& 4\left[\begin{array}{c}
-4.5 \\
-4 \\
1
\end{array}\right]=\lambda\left[\begin{array}{c}
-4.5 \\
-4 \\
1
\end{array}\right] \\
& \lambda=4
\end{aligned}
$$

3. The eigenvalues of the following matrix

$$
\left[\begin{array}{ccc}
3 & 2 & 9 \\
7 & 5 & 13 \\
6 & 17 & 19
\end{array}\right]
$$

are given by solving the cubic equation
(A) $\lambda^{3}-27 \lambda^{2}+167 \lambda-285$
(B) $\lambda^{3}-27 \lambda^{2}-122 \lambda-313$
(C) $\lambda^{3}+27 \lambda^{2}+167 \lambda+285$
(D) $\lambda^{3}+23.23 \lambda^{2}-158.3 \lambda+313$

Solution

The correct answer is (B).

To find the equations of

$$
[A]=\left[\begin{array}{ccc}
3 & 2 & 9 \\
7 & 5 & 13 \\
6 & 17 & 19
\end{array}\right]
$$

we solve $\operatorname{det}([A]-\lambda[I])=0$

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{ccc}
3 & 2 & 9 \\
7 & 5 & 13 \\
6 & 17 & 19
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0 \\
& \operatorname{det}\left(\left[\begin{array}{ccc}
3-\lambda & 2 & 9 \\
7 & 5-\lambda & 13 \\
6 & 17 & 19-\lambda
\end{array}\right]\right)=0
\end{aligned}
$$

Using the cofactor method with Row1

$$
\begin{aligned}
& (3-\lambda)\left|\begin{array}{cc}
5-\lambda & 13 \\
17 & 19-\lambda
\end{array}\right|-2\left|\begin{array}{cc}
7 & 13 \\
6 & 19-\lambda
\end{array}\right|+9\left|\begin{array}{cc}
7 & 5-\lambda \\
6 & 17
\end{array}\right|=0 \\
& (3-\lambda)((5-\lambda)(19-\lambda)-13 \times 17)-2(7(19-\lambda)-13 \times 6)+9(7 \times 17-6(5-\lambda))=0 \\
& \lambda^{3}-27 \lambda^{2}-122 \lambda-313=0
\end{aligned}
$$

4. The eigenvalues of a 4×4 matrix $[A]$ are given as $2,-3,13$, and 7 . The $\mid \operatorname{det}(A)$ then is
(A) 546
(B) 19
(C) 25
(D) cannot be determined

Solution

The correct answer is (A).

If $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n-1}, \lambda_{n}$ are the eigenvalues of a $n \times n$ matrix $[A]$, then

$$
\begin{aligned}
|\operatorname{det}(A)|= & \left|\lambda_{1} \times \lambda_{2} \times \lambda_{3} \times \ldots \times \lambda_{n}\right| \\
& \left|\lambda_{1} \times \lambda_{2} \times \lambda_{3} \times \lambda_{4}\right| \\
= & |2 \times(-3) \times 13 \times 7| \\
= & 546
\end{aligned}
$$

5. If one of the eigenvalues of $[A]_{n \times n}$ is zero, it implies
(A) The solution to $[A \llbracket X]=[C]$ system of equations is unique
(B) The determinant of $[A]$ is zero
(C) The solution to $[A][X]=[0]$ system of equations is trivial
(D) The determinant of $[A]$ is nonzero

Solution

The correct answer is (B).

For a $n \times n$ matrix $[A]$ with $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n-1}, \lambda_{n}$ as the eigenvectors

$$
|\operatorname{det}(A)|=\left|\lambda_{1} \times \lambda_{2} \times \lambda_{3} \times \ldots \times \lambda_{n}\right|
$$

Since one of the eigenvalues is zero,

$$
\begin{aligned}
& |\operatorname{det}(A)|=0 \\
& \operatorname{det}(A)=0
\end{aligned}
$$

6. Given that matrix $[A]=\left[\begin{array}{ccc}8 & -4 & 2 \\ 4 & 0 & 2 \\ 0 & -2 & -3\end{array}\right]$ has an eigenvalue value of 4 with the corresponding eigenvectors of $[x]=\left[\begin{array}{c}-4.5 \\ -4 \\ 1\end{array}\right]$, then $[A]^{5}[X]$ is
(A) $\left[\begin{array}{c}-18 \\ -16 \\ 4\end{array}\right]$
(B) $\left[\begin{array}{c}-4.5 \\ -4 \\ 1\end{array}\right]$
(C) $\left[\begin{array}{c}-4608 \\ -4096 \\ 1024\end{array}\right]$
(D) $\left[\begin{array}{c}-0.004395 \\ -0.003906 \\ 0.0009766\end{array}\right]$

Solution

The correct answer is (C).

If for a $n \times n$ matrix $[A], \lambda$ is an eigenvalue and $[X]$ is the corresponding eigenvector, then $[A]^{m}[x]=\lambda^{m}[X]$ $[A]^{5}[X]=\lambda^{5}[X]$

$$
=4^{5}\left[\begin{array}{c}
-4.5 \\
-4 \\
1
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
-4608 \\
-4096 \\
1024
\end{array}\right]
$$

Appendix for Question 6

For a $n \times n$ matrix [A], if λ is an eigenvalue and $[X]$ is an eigenvector prove for

$$
[A]^{m}[x]=\lambda^{m}[X], m=1,2,3 \ldots
$$

For a $n \times n$ matrix [A], if λ is an eigenvalue and $[X]$ is an eigenvector then

$$
\begin{aligned}
{[A][X] } & =\lambda[X] \\
{[A]^{2}[X] } & =[A][A][X] \\
& =\lambda[A][X] \\
& =\lambda \times \lambda[X] \\
& =\lambda^{2}[X]
\end{aligned}
$$

If

$$
[A]^{m-1}[X]=\lambda^{m-1}[X], m \geq 0, m=\text { integer }
$$

Then

$$
\begin{aligned}
{[A]^{m}[X] } & =[A][A]^{m-1}[X] \\
& =\lambda^{m-1}[A][X] \\
& =[A] \lambda^{m-1}[X] \\
& =\lambda^{m-1} \times \lambda[X] \\
& =\lambda^{m}[X]
\end{aligned}
$$

