Holistic Numerical Methods Institute

committed to bringing numerical methods to undergraduates

Multiple-Choice Test Chapter 4.10 Eigenvalues and Eigenvectors

COMPLETE SOLUTION SET

1. The eigenvalues of

$$\begin{bmatrix} 5 & 6 & 17 \\ 0 & -19 & 23 \\ 0 & 0 & 37 \end{bmatrix}$$
 are

(A) -19,5,37
(B) 19,-5,-37
(C) 2,-3,7
(D) 3,-5,37

Solution

The correct answer is (A).

The eigenvalues of an upper triangular matrix are simply the diagonal entries of the matrix. Hence 5,-19, and 37 are the eigenvalues of the matrix. Alternately, look at $det([A] - \lambda[I]) = 0$

$$\det \begin{pmatrix} 5 & 6 & 17 \\ 0 & -19 & 23 \\ 0 & 0 & 37 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 0$$
$$\det \begin{pmatrix} 5 - \lambda & 6 & 17 \\ 0 & -19 - \lambda & 23 \\ 0 & 0 & 37 - \lambda \end{bmatrix} = 0$$
$$(5 - \lambda)(-19 - \lambda)(37 - \lambda) = 0$$

Then

 $\lambda = 5, -19, 37$

are the roots of the equation; and hence, the eigenvalues of [A].

2. If
$$\begin{bmatrix} -4.5 \\ -4 \\ 1 \end{bmatrix}$$
 is an eigenvector of $\begin{bmatrix} 8 & -4 & 2 \\ 4 & 0 & 2 \\ 0 & -2 & -4 \end{bmatrix}$, the eigenvalue corresponding to the eigenvector is
(A) 1
(B) 4
(C) -4.5
(D) 6

The correct answer is (B).

If [A] is a $n \times n$ matrix and λ is one of the eigenvalues and [X] is a $n \times 1$ corresponding eigenvector, then

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} X \end{bmatrix} = \lambda \begin{bmatrix} X \end{bmatrix}$$
$$\begin{bmatrix} 8 & -4 & 2 \\ 4 & 0 & 2 \\ 0 & -2 & -4 \end{bmatrix} \begin{bmatrix} -4.5 \\ -4 \\ 1 \end{bmatrix} = \lambda \begin{bmatrix} -4.5 \\ -4 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} -18 \\ -16 \\ 4 \end{bmatrix} = \lambda \begin{bmatrix} -4.5 \\ -4 \\ 1 \end{bmatrix}$$
$$4 \begin{bmatrix} -4.5 \\ -4 \\ 1 \end{bmatrix} = \lambda \begin{bmatrix} -4.5 \\ -4 \\ 1 \end{bmatrix}$$

 $\lambda = 4$

- 3. The eigenvalues of the following matrix
 - $\begin{bmatrix} 3 & 2 & 9 \\ 7 & 5 & 13 \\ 6 & 17 & 19 \end{bmatrix}$

are given by solving the cubic equation

(A) $\lambda^{3} - 27\lambda^{2} + 167\lambda - 285$ (B) $\lambda^{3} - 27\lambda^{2} - 122\lambda - 313$ (C) $\lambda^{3} + 27\lambda^{2} + 167\lambda + 285$ (D) $\lambda^{3} + 23.23\lambda^{2} - 158.3\lambda + 313$

Solution

The correct answer is (B).

To find the equations of

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 3 & 2 & 9 \\ 7 & 5 & 13 \\ 6 & 17 & 19 \end{bmatrix}$$

we solve det $([A] - \lambda[I]) = 0$
det $\begin{pmatrix} 3 & 2 & 9 \\ 7 & 5 & 13 \\ 6 & 17 & 19 \end{pmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 0$
det $\begin{pmatrix} 3 - \lambda & 2 & 9 \\ 7 & 5 - \lambda & 13 \\ 6 & 17 & 19 - \lambda \end{bmatrix} = 0$

Using the cofactor method with Row1

$$(3-\lambda) \begin{vmatrix} 5-\lambda & 13\\ 17 & 19-\lambda \end{vmatrix} - 2 \begin{vmatrix} 7 & 13\\ 6 & 19-\lambda \end{vmatrix} + 9 \begin{vmatrix} 7 & 5-\lambda\\ 6 & 17 \end{vmatrix} = 0 (3-\lambda)((5-\lambda)(19-\lambda)-13\times17) - 2(7(19-\lambda)-13\times6) + 9(7\times17-6(5-\lambda)) = 0$$

$$\lambda^3 - 27\lambda^2 - 122\lambda - 313 = 0$$

- 4. The eigenvalues of a 4×4 matrix [A] are given as 2,-3,13, and 7. The $|\det(A)|$ then is
 - (A) 546 (B) 19
 - (C) 25
 - (D) cannot be determined

The correct answer is (A).

If $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigenvalues of a $n \times n$ matrix [A], then $|\det(A)| = |\lambda_1 \times \lambda_2 \times \lambda_3 \times ... \times \lambda_n|$ $|\lambda_1 \times \lambda_2 \times \lambda_3 \times \lambda_4|$ $= |2 \times (-3) \times 13 \times 7|$ = 546

- 5. If one of the eigenvalues of $[A]_{n \times n}$ is zero, it implies
 - (A) The solution to [A][X] = [C] system of equations is unique
 - (B) The determinant of [A] is zero
 - (C) The solution to [A][X] = [0] system of equations is trivial
 - (D) The determinant of [A] is nonzero

The correct answer is (B).

For a $n \times n$ matrix [A] with $\lambda_1, \lambda_2, \dots, \lambda_{n-1}, \lambda_n$ as the eigenvectors

 $|\det(A)| = |\lambda_1 \times \lambda_2 \times \lambda_3 \times \ldots \times \lambda_n|$

Since one of the eigenvalues is zero,

$$\left|\det(A)\right| = 0$$

 $\det(A) = 0$

6. Given that matrix
$$[A] = \begin{bmatrix} 8 & -4 & 2 \\ 4 & 0 & 2 \\ 0 & -2 & -3 \end{bmatrix}$$
 has an eigenvalue value of 4 with the corresponding
eigenvectors of $[x] = \begin{bmatrix} -4.5 \\ -4 \\ 1 \end{bmatrix}$, then $[A]^{s}[X]$ is
 $(A) \begin{bmatrix} -18 \\ -16 \\ 4 \end{bmatrix}$
 $(B) \begin{bmatrix} -4.5 \\ -4 \\ 1 \end{bmatrix}$
 $(C) \begin{bmatrix} -4608 \\ -4096 \\ 1024 \end{bmatrix}$
 $(D) \begin{bmatrix} -0.004395 \\ -0.003906 \\ 0.009766 \end{bmatrix}$

The correct answer is (C).

If for a $n \times n$ matrix [A], λ is an eigenvalue and [X] is the corresponding eigenvector, then

$$[A]^{m}[x] = \lambda^{m}[X]$$
$$[A]^{5}[X] = \lambda^{5}[X]$$
$$= 4^{5} \begin{bmatrix} -4.5\\-4\\1 \end{bmatrix}$$
$$= \begin{bmatrix} -4608\\-4096\\1024 \end{bmatrix}$$

Appendix for Question 6

For a $n \times n$ matrix [A], if λ is an eigenvalue and [X] is an eigenvector prove for $[A]^m[x] = \lambda^m[X], m = 1,2,3...$

For a $n \times n$ matrix [A], if λ is an eigenvalue and [X] is an eigenvector then

$$[A][X] = \lambda[X]$$
$$[A]^{2}[X] = [A][A][X]$$
$$= \lambda[A][X]$$
$$= \lambda \times \lambda[X]$$
$$= \lambda^{2}[X]$$

If

 $[A]^{m-1}[X] = \lambda^{m-1}[X], m \ge 0, m = integer$

Then

$$[A]^{m}[X] = [A][A]^{m-1}[X] = \lambda^{m-1}[A][X] = [A]\lambda^{m-1}[X] = \lambda^{m-1} \times \lambda[X] = \lambda^{m}[X]$$