Multiple-Choice Test

Chapter 4.10
 Eigenvalues and Eigenvectors

1. The eigenvalues of

$$
\left[\begin{array}{ccc}
5 & 6 & 17 \\
0 & -19 & 23 \\
0 & 0 & 37
\end{array}\right]
$$

are
(A) $-19,5,37$
(B) $19,-5,-37$
(C) $2,-3,7$
(D) $3,-5,37$
2. If $\left[\begin{array}{c}-4.5 \\ -4 \\ 1\end{array}\right]$ is an eigenvector of $\left[\begin{array}{ccc}8 & -4 & 2 \\ 4 & 0 & 2 \\ 0 & -2 & -4\end{array}\right]$, the eigenvalue corresponding to the
eigenvector is
(A) 1
(B) 4
(C) -4.5
(D) 6
3. The eigenvalues of the following matrix

$$
\left[\begin{array}{ccc}
3 & 2 & 9 \\
7 & 5 & 13 \\
6 & 17 & 19
\end{array}\right]
$$

are given by solving the cubic equation
(A) $\lambda^{3}-27 \lambda^{2}+167 \lambda-285$
(B) $\lambda^{3}-27 \lambda^{2}-122 \lambda-313$
(C) $\lambda^{3}+27 \lambda^{2}+167 \lambda+285$
(D) $\lambda^{3}+23.23 \lambda^{2}-158.3 \lambda+313$
4. The eigenvalues of a 4×4 matrix $[A]$ are given as $2,-3,13$, and 7 . The $\mid \operatorname{det}(A)$ then is
(A) 546
(B) 19
(C) 25
(D) cannot be determined
5. If one of the eigenvalues of $[A]_{n \times n}$ is zero, it implies
(A) The solution to $[A \llbracket X]=[C]$ system of equations is unique
(B) The determinant of $[A]$ is zero
(C) The solution to $[A][X]=[0]$ system of equations is trivial
(D) The determinant of $[A]$ is nonzero
6. Given that matrix $[A]=\left[\begin{array}{ccc}8 & -4 & 2 \\ 4 & 0 & 2 \\ 0 & -2 & -3\end{array}\right]$ has an eigenvalue value of 4 with the corresponding eigenvectors of $[x]=\left[\begin{array}{c}-4.5 \\ -4 \\ 1\end{array}\right]$, then $[A]^{5}[X]$ is
(A) $\left[\begin{array}{c}-18 \\ -16 \\ 4\end{array}\right]$
(B) $\left[\begin{array}{c}-4.5 \\ -4 \\ 1\end{array}\right]$
(C) $\left[\begin{array}{c}-4608 \\ -4096 \\ 1024\end{array}\right]$
(D) $\left[\begin{array}{l}-0.004395 \\ -0.003906 \\ 0.0009766\end{array}\right]$

