Quiz Chapter 06: Gaussian Elimination MULTIPLE CHOICE TEST (All Tests) GAUSSIAN ELIMINATION (More on Gaussian Elimination) Pick the most appropriate answer 1. The goal of forward elimination steps in Naïve Gauss elimination method is to reduce the coefficient matrix to a(n) ______ matrix. diagonal identity lower triangular upper triangular 2. Division by zero during forward elimination steps in Naïve Gaussian elimination of the set of equations \left[ A \right] \left[ X \right] = \left[ C \right] implies the coefficient matrix \left[ A \right] is invertible nonsingular not determinable to be singular or nonsingular singular 3. Using a computer with four significant digits with chopping, Naïve Gauss elimination solution to 0.0030x_{1} + 55.23x_{2} = 58.12 6.239x_{1} - 7.123x_{2} = 47.23 is x_{1} = 26.66; \, x_{2} = 1.051 x_{1} = 8.769; \, x_{2} = 1.051 x_{1} = 8.800; \, x_{2} = 1.000 x_{1} = 8.771; \, x_{2} = 1.052 4. Using a computer with four significant digits with chopping, Gaussian elimination with partial pivoting solution to 0.0030x_{1} + 55.23x_{2} = 58.12 6.239x_{1} - 7.123x_{2} = 47.23 is x_{1} = 26.66; \, x_{2} = 1.051 x_{1} = 8.769; \, x_{2} = 1.051 x_{1} = 8.800; \, x_{2} = 1.000 x_{1} = 8.771; \, x_{2} = 1.052 5. At the end of forward elimination steps of Naïve Gauss Elimination method on the following equations \begin{bmatrix} 4.2857 \times 10^{7}&-9.2307 \times 10^{5}&0&0 \\ 4.2857 \times 10^{7}&-5.4619 \times 10^{5}&-4.2857 \times 10^{7}&5.4619 \times 10^{5} \\ -6.5&-0.15384&6.5&0.15384 \\ 0&0&4.2857 \times 10^{7}&-3.6057 \times 10^{5} \\ \end{bmatrix} \begin{bmatrix}c_{1} \\ c_{2} \\ c_{3} \\c_{4} \\ \end{bmatrix} = \begin{bmatrix} -7.887 \times 10^{3} \\ 0 \\ 0.007 \\ 0 \\ \end{bmatrix} the resulting equations in the matrix form are given by \begin{bmatrix} 4.2857 \times 10^{7}&-9.2307 \times 10^{5}&0&0 \\ 0&3.7688 \times 10^{5}&-4.2857 \times 10^{7}&5.4619 \times 10^{5} \\ 0&0&-26.9140&0.579684 \\ 0&0&0&5.62500 \times 10^{5} \\ \end{bmatrix} \begin{bmatrix}c_{1} \\ c_{2} \\ c_{3} \\c_{4} \\ \end{bmatrix} = \begin{bmatrix} -7.887 \times 10^{3} \\ 7.887 \times 10^{3} \\ 1.19530 \times 10^{-2} \\ 1.90336 \times 10^{4} \\ \end{bmatrix} The determinant of the original coefficient matrix is 0.00 4.2857 \times 10^{7} 5.486 \times 10^{19} -2.445 \times 10^{20} 6. The following data is given for the velocity of the rocket as a function of time. To find the velocity at t=21 s, you are asked to use a quadratic polynomial, v(t) = at^{2} + bt + c to approximate the velocity profile. t (s) 0 14 15 20 30 35 v(t) m/s 0 227.04 362.78 517.35 602.97 901.67 The correct set of equations that will find a, \, b and c are \begin{bmatrix} 176&14&1 \\ 225&15&1 \\ 400&20&1 \\ \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ \end{bmatrix} = \begin{bmatrix} 227.04 \\ 362.78 \\ 517.35 \\ \end{bmatrix} \begin{bmatrix} 225&15&1 \\ 400&20&1 \\ 900&30&1 \\ \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ \end{bmatrix} = \begin{bmatrix} 362.78 \\ 517.35 \\ 602.97 \\ \end{bmatrix} \begin{bmatrix} 0&0&1 \\ 225&15&1 \\ 400&20&1 \\ \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 362.78 \\ 517.35 \\ \end{bmatrix} \begin{bmatrix} 400&20&1 \\ 900&30&1 \\ 1225&35&1 \\ \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ \end{bmatrix} = \begin{bmatrix} 517.35 \\ 602.97 \\ 901.67 \\ \end{bmatrix} Loading …