
 
 
 
 
 
Chapter 04.05 
System of Equations 
 
 
 
 
 
After reading this chapter, you should be able to: 

1. setup simultaneous linear equations in matrix form and vice-versa, 
2. understand the concept of the inverse of a matrix, 
3. know the difference between a consistent and inconsistent system of linear equations, 

and 
4. learn that a system of linear equations can have a unique solution, no solution or 

infinite solutions. 
 
Matrix algebra is used for solving systems of equations.  Can you illustrate this 
concept? 
Matrix algebra is used to solve a system of simultaneous linear equations.  In fact, for many 
mathematical procedures such as the solution to a set of nonlinear equations, interpolation, 
integration, and differential equations, the solutions reduce to a set of simultaneous linear 
equations.  Let us illustrate with an example for interpolation. 
 
Example 1 
The upward velocity of a rocket is given at three different times on the following table. 
                                 Table 5.1. Velocity vs. time data for a rocket 

Time, t Velocity, v 
(s) (m/s) 
5 106.8 
8 177.2 
12 279.2 

The velocity data is approximated by a polynomial as 
( ) 12.t5   , 2 ≤≤++= cbtattv  

Set up the equations in matrix form to find the coefficients cba ,,  of the velocity profile. 
Solution 

The polynomial is going through three data points ( ) ( ) ( )332211 ,t and ,, ,, vvtvt  where from 
table 5.1. 

8.106,5 11 == vt  
2.177,8 22 == vt  

04.05.1 
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2.279,12 33 == vt  
Requiring that ( ) cbtattv ++= 2  passes through the three data points gives 

( ) cbtatvtv ++== 1
2
111  

( ) cbtatvtv ++== 2
2
222  

( ) cbtatvtv ++== 3
2
333  

Substituting the data ( ) ( ) ( )332211  ,and , , , , vtvtvt  gives 
( ) ( ) 8.106552 =++ cba  
( ) ( ) 2.177882 =++ cba  
( ) ( ) 2.27912122 =++ cba  

or 
8.106525 =++ cba    
2.177864 =++ cba  

2.27912144 =++ cba  
This set of equations can be rewritten in the matrix form as 
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 The above equation can be written as a linear combination as follows 
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and further using matrix multiplication gives 
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The above is an illustration of why matrix algebra is needed. The complete solution to the set 
of equations is given later in this chapter. 
 
A general set of m  linear equations and n  unknowns, 

11212111 cxaxaxa nn =+++   

22222121 cxaxaxa nn =+++   
…………………………………… 
……………………………………. 

mnmnmm cxaxaxa =+++ ........2211  
can be rewritten in the matrix form as 
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Denoting the matrices by [ ]A , [ ]X , and [ ]C , the system of equation is  
[ ][ ] [ ]CXA = , where [ ]A  is called the coefficient matrix, [ ]C  is called the right hand side 
vector and [ ]X  is called the solution vector.  
Sometimes [ ][ ] [ ]CXA =  systems of equations are written in the augmented form.  That is 

[ ]























=

nmnmm

n

n

c

c
c

a......aa

a......aa
a......aa

  CA
2

1

21

22221

11211















 

A system of equations can be consistent or inconsistent.  What does that mean? 

A system of equations [ ][ ] [ ]CXA =  is consistent if there is a solution, and it is inconsistent if 
there is no solution.  However, a consistent system of equations does not mean a unique 
solution, that is, a consistent system of equations may have a unique solution or infinite 
solutions (Figure 1). 
 

 
            Figure 5.1. Consistent and inconsistent system of equations flow chart. 
 
 
Example 2 
Give examples of consistent and inconsistent system of equations. 
Solution 
a) The system of equations 

Consistent System Inconsistent System 

Unique Solution Infinite Solutions 

[A][X]= [B] 
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is a consistent system of equations as it has a unique solution, that is, 
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b) The system of equations 
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is also a consistent system of equations but it has infinite solutions as given as follows. 
Expanding the above set of equations,  

32
642

=+
=+

yx
yx

  

you can see that they are the same equation.  Hence, any combination of ( )yx,  that satisfies  
642 =+ yx  

is a solution.  For example ( ) ( )1,1, =yx  is a solution.  Other solutions include 
( ) )25.1,5.0(, =yx , ( ) )5.1  ,0(, =yx , and so on. 
c) The system of equations 
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is inconsistent as no solution exists. 
 
How can one distinguish between a consistent and inconsistent system of equations? 

A system of equations [ ][ ] [ ]CXA =  is consistent if the rank of A  is equal to the rank of the 
augmented matrix [ ]CA  
A system of equations [ ][ ] [ ]CXA =  is inconsistent if the rank of A  is less than the rank of 
the augmented matrix [ ]CA .   
 
But, what do you mean by rank of a matrix?  
The rank of a matrix is defined as the order of the largest square submatrix whose 
determinant is not zero. 
 
Example 3 
What is the rank of  

[ ]















=

321
502
213

A ? 

Solution 

The largest square submatrix possible is of order 3 and that is ][A  itself. Since 
,023)det( ≠−=A  the rank of .3][ =A  
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Example 4 
What is the rank of  

[ ]















=

715
502
213

A ? 

Solution 

The largest square submatrix of ][A  is of order 3 and that is ][A  itself.  Since 0)det( =A , the 
rank of ][A  is less than 3.  The next largest square submatrix would be a 2×2 matrix.  One of 
the square submatrices of ][A  is 

[ ] 







=

02
13

B  

and 02)det( ≠−=B .  Hence the rank of ][A  is 2.  There is no need to look at other 22×  
submatrices to establish that the rank of ][A  is 2. 
 
Example 5 
How do I now use the concept of rank to find if 
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is a consistent or inconsistent system of equations? 
Solution 
The coefficient matrix is 

[ ]















=

112144
1864
1525

A  

and the right hand side vector is 

[ ]
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2.279
2.177
8.106

C  

The augmented matrix is 

[ ]















=

2.279112144
2.1771864
8.1061525







B  

Since there are no square submatrices of order 4 as ][B  is a 3×4 matrix, the rank of ][B  is at 
most 3.  So let us look at the square submatrices of ][B  of order 3; if any of these square 
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submatrices have determinant not equal to zero, then the rank is 3.  For example, a submatrix 
of the augmented matrix ][B  is 
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112144
1864
1525

][D  

has 084)det( ≠−=D . 
Hence the rank of the augmented matrix ][B  is 3.  Since ][][ DA = , the rank of ][A  is 3.  
Since the rank of the augmented matrix ][B  equals the rank of the coefficient matrix ][A , the 
system of equations is consistent. 
 
Example 6 
Use the concept of rank of matrix to find if 
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is consistent or inconsistent? 
Solution 
The coefficient matrix is given by 
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21389
1864
1525
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and the right hand side 
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The augmented matrix is 

[ ]
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0.284:21389
2.177:1864
8.106:1525

B  

Since there are no square submatrices of order 4 as ][B  is a 4×3 matrix, the rank of the 
augmented ][B  is at most 3.  So let us look at square submatrices of the augmented matrix 

][B  of order 3 and see if any of these have determinants not equal to zero.  For example, a 
square submatrix of the augmented matrix ][B  is 

[ ]
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has 0)det( =D .  This means, we need to explore other square submatrices of order 3 of the 
augmented matrix ][B  and find their determinants. 
That is, 

[ ]















=

0.284213
2.17718
8.10615

E  

0)det( =E  

[ ]
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0.2841389
2.177864
8.106525

F   

0)det( =F  
 

[ ]















=

0.284289
2.177164
8.106125

G  

0)det( =G  
All the square submatrices of order 3×3 of the augmented matrix ][B  have a zero 
determinant.  So the rank of the augmented matrix ][B  is less than 3.  Is the rank of 
augmented matrix ][B  equal to 2?. One of the 22×  submatrices of  the augmented matrix 

][B  is 

[ ] 







=

864
525

H  

and 
0120)det( ≠−=H  

So the rank of the augmented matrix ][B  is 2.   
Now we need to find the rank of the coefficient matrix ][B . 

 [ ]
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21389
1864
1525

A  

and 
0)det( =A  

So the rank of the coefficient matrix ][A  is less than 3.  A square submatrix of the coefficient 
matrix ][A  is 

[ ] 







=

18
15

J  

03)det( ≠−=J  
So the rank of the coefficient matrix ][A  is 2.   
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Hence, rank of the coefficient matrix ][A equals the rank of the augmented matrix [B].  So 
the system of equations ][][][ CXA =  is consistent. 
 
Example 7 
Use the concept of rank to find if 
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is consistent or inconsistent. 
Solution 
The augmented matrix is 

[ ]















=

0.280:21389
2.177:1864
8.106:1525

B  

Since there are no square submatrices of order 4×4 as the augmented matrix  ][B  is a 4×3 
matrix, the rank of the augmented matrix ][B  is at most 3.  So let us look at square 
submatrices of the augmented matrix (B) of order 3 and see if any of the 3×3 submatrices 
have a determinant not equal to zero.  For example, a square submatrix of order 3×3 of  ][B  

[ ]
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21389
1864
1525

D  

det(D) = 0 
So it means, we need to explore other square submatrices of the augmented matrix ][B  

[ ]















=

0.280213
2.17718
8.10615

E  

00.12)det( ≠=E . 
So the rank of the augmented matrix ][B  is 3. 
The rank of the coefficient matrix ][A  is 2 from the previous example. 
Since the rank of the coefficient matrix  ][A  is less than the rank of the augmented matrix 

][B , the system of equations is inconsistent.  Hence, no solution exists for ][][][ CXA = . 
 
If a solution exists, how do we know whether it is unique? 

In a system of equations ][][][ CXA =  that is consistent, the rank of the coefficient matrix 
][A  is the same as the augmented matrix ][ CA .  If in addition, the rank of the coefficient 

matrix ][A  is same as the number of unknowns, then the solution is unique; if the rank of the 
coefficient matrix ][A  is less than the number of unknowns, then infinite solutions exist. 
 



 System of Equations                                                                                                     04.05.9
  
 

Unique solution if
rank (A) = number of unknowns

Infinite solutions if
rank (A) < number of unknowns

Consistent System if
rank (A) = rank (A.B)

Inconsistent System if
rank (A) < rank (A.B)

[A] [X] = [B]

 
 Figure 5.2. Flow chart of conditions for consistent and inconsistent system of equations. 

 
 
Example 8 
We found that the following system of equations 
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is a consistent system of equations.  Does the system of equations have a unique solution or 
does it have infinite solutions? 
Solution 
The coefficient matrix is 

[ ]
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1864
1525

A  

and the right hand side is 

[ ]















=

2.279
2.177
8.106

C  

While finding out whether the above equations were consistent in an earlier example, we 
found that the rank of the coefficient matrix (A) equals rank of augmented matrix [ ]CA  
equals 3. 
The solution is unique as the number of unknowns = 3 = rank of (A). 
 
Example 9 
We found that the following system of equations 
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is a consistent system of equations.  Is the solution unique or does it have infinite solutions. 
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Solution 
While finding out whether the above equations were consistent, we found that the rank of the 
coefficient matrix ][A equals the rank of augmented matrix ( )CA  equals 2 
Since the rank of 2][ =A  < number of unknowns = 3, infinite solutions exist. 
 
If we have more equations than unknowns in [A] [X] = [C], does it mean the system is 
inconsistent? 

No, it depends on the rank of the augmented matrix [ ]CA  and the rank of ][A . 
a)  For example 
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is consistent, since 
rank of augmented matrix = 3 
rank of coefficient matrix = 3 

Now since  the rank of (A) = 3 = number of unknowns, the solution is not only consistent but 
also unique. 
b)  For example 
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is inconsistent, since 
rank of augmented matrix  = 4 
rank of coefficient matrix = 3 

c)  For example 
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is consistent, since 
rank of augmented matrix  = 2 
rank of coefficient matrix = 2 

But since the rank of ][A  = 2 < the number of unknowns = 3, infinite solutions exist. 
 
Consistent systems of equations can only have a unique solution or infinite solutions.  
Can a system of equations have more than one but not infinite number of solutions? 
No, you can only have either a unique solution or infinite solutions.  Let us suppose 

 ][][ ][ CXA = has two solutions ][Y  and ][Z  so that 
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][][ ][ CYA =   
][][ ][ CZA =  

If r  is a constant, then from the two equations  
[ ][ ] [ ]CrYAr =  
( )[ ][ ] ( )[ ]CrZAr −=− 1 1  

Adding the above two equations gives 
 [ ][ ] ( )[ ][ ] [ ] ( )[ ]CrCrZArYAr −+=−+ 1 1  
[ ] [ ] ( )[ ]( ) [ ]CZrYrA =−+ 1  

Hence 
[ ] ( )[ ]ZrYr −+ 1  

is a solution to 
[ ][ ] [ ]CXA =  

Since r  is any scalar, there are infinite solutions for ][][][ CXA =  of the form 
[ ] ( )[ ]ZrYr −+ 1  

 
Can you divide two matrices? 

If ][][][ CBA =  is defined, it might seem intuitive that [ ]
[ ]B
CA =][ , but matrix division is not 

defined like that.  However an inverse of a matrix can be defined for certain types of square 
matrices.  The inverse of a square matrix ][A , if existing, is denoted by 1][ −A  such that 

][][][][][ 11 AAIAA −− ==   
Where ][I  is the identity matrix. 
In other words, let [A] be a square matrix.  If ][B  is another square matrix of the same size 
such that ][][][ IAB = , then ][B  is the inverse of ][A . ][A  is then called to be invertible or 
nonsingular.  If  1][ −A  does not exist, ][A  is called  noninvertible or singular. 
If ][A  and ][B  are two nn×  matrices such that ][][][ IAB = , then these statements are also 
true 

• [B] is the inverse of [A] 
• [A] is the inverse of [B] 
• [A] and [B] are both invertible  
• [A] [B]=[I]. 
• [A] and [B] are both nonsingular 
• all columns of [A] and [B]are linearly independent 
• all rows of [A] and [B] are linearly independent. 

 
Example 10 
Determine if 









=

35
23

][B  

is the inverse of  
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            ][I=  
Since  
 ][][][ IAB = ,  

][B  is the inverse of [A] and ][A  is the inverse of ][B .  
But, we can also show that  

]][[ BA 
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            I][=  
to show that ][A  is the inverse of ][B . 
 
Can I use the concept of the inverse of a matrix to find the solution of a set of equations 
[A] [X] = [C]? 
Yes, if the number of equations is the same as the number of unknowns, the coefficient 
matrix ][A  is a square matrix.   
Given 

][][][ CXA =  
Then, if 1][ −A  exists, multiplying both sides by 1][ −A .  

][][]][[][ 11 CAXAA −− =  
][][][][ 1 CAXI −=  

][][][ 1 CAX −=  
This implies that if we are able to find 1][ −A , the solution vector of ][][][ CXA =  is simply a 
multiplication of 1][ −A  and the right hand side vector, ][C .  
 
How do I find the inverse of a matrix?  

If ][A  is a nn×  matrix, then 1][ −A  is a nn×  matrix and according to the definition of 
inverse of a matrix 

][][][ 1 IAA =−  
Denoting  
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Using the definition of matrix multiplication, the first column of the 1][ −A  matrix can then be 
found by solving 
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Similarly, one can find the other columns of the 1][ −A  matrix by changing the right hand side 
accordingly. 
 
Example 11  
The upward velocity of the rocket is given by 

                        Table 5.2. Velocity vs time data for a rocket 
Time, t (s) Velocity, v  (m/s) 
5 106.8 
8 177.2 
12 279.2 

In an earlier example, we wanted to approximate the velocity profile by 
( ) 125   ,2 ≤≤++= tcbtattv  

We found that the coefficients cba and,,  in ( )tv  are given by 
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First, find the inverse of 
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and then use the definition of inverse to find the coefficients .and,, cba  
Solution 
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is the inverse of ][A , then 
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gives three sets of equations 
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Solving the above three sets of equations separately gives 
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4643.0417.19524.0
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][ 1A  

Now 
[ ][ ] [ ]CXA =  

where 
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Using the definition of  [ ] ,1−A  
[ ] [ ][ ] [ ] [ ]                 11 CAXAA −− =  
[ ] [ ] [ ]CA  X 1−=  
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So  
( ) 125 ,086.169.192905.0 2 ≤≤++= ttttv  

 
Is there another way to find the inverse of a matrix? 
For finding the inverse of small matrices, the inverse of an invertible matrix can be found by 

[ ] ( ) ( )Aadj
A

A
det

11 =−  

where 
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where ijC  are the cofactors of ija .  The matrix  
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itself is called the matrix of cofactors from [A].  Cofactors are defined in Chapter 4. 
 
Example 12  
Find the inverse of 

[ ]















=

112144
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A  

Solution 
From Example 4.6 in Chapter 04.06, we found 

( ) 84det −=A  
Next we need to find the adjoint of ][A .  The cofactors of A  are found as follows. 
The minor of entry 11a  is 

112144
1864
1525

11 =M  

                   
112
18

=  

                   4−=   
The cofactors of entry 11a  is 

( ) 11
11

11 1 MC +−=  
                   11M=  
                   4−=  
The minor of entry 12a  is 

112144
1864
1525

12 =M  
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1144
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=  

       80−=  
The cofactor of entry 12a  is 
 ( ) 12

21
12 1 MC +−=  

       12M−=  
                  )80(−−=  
       80=   
Similarly 
 38413 −=C  
 721 =C  
 11922 −=C  
 42023 =C  
 331 −=C  
 3932 =C  
 12033 −=C  
Hence the matrix of cofactors of ][A  is 
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4201197
384804

C  

The adjoint of matrix ][A  is T][C , 
( ) [ ]TCAadj =  
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Hence 

[ ] ( ) ( )Aadj
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429.1000.5571.4
4643.0417.19524.0

03571.008333.004762.0
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If the inverse of a square matrix [A] exists, is it unique? 
Yes, the inverse of a square matrix is unique, if it exists.  The proof is as follows.  Assume 
that the inverse of ][A  is ][B  and if this inverse is not unique, then let another inverse of ][A  
exist called ][C . 
If ][B  is the inverse of ][A , then 

][][][ IAB =  
Multiply both sides by ][C , 

][][][][][ CICAB =  
][][][][ CCAB =  

Since [C] is inverse of ][A , 
][][][ ICA =  

Multiply both sides by ][B , 
][][][ CIB =  

][][ CB =  
This shows that ][B  and ][C  are the same. So the inverse of ][A  is unique. 
 
 
Key Terms: 
Consistent system 
Inconsistent system 
Infinite solutions 
Unique solution 
Rank 
Inverse  
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